

In the Jungle, Welcome to the Fungal Hologic Panther's® Got What You Need

Megan Ahmann, MS and Jeff Benfer, MS, MB(ASCP)

The State Hygienic Laboratory at the University of Iowa

Background

Candida auris (C. auris) is an emerging resistant yeast that can cause severe infections and is easily spread, especially among healthcare facilities. The yeast was first identified in Japan in 2009 and has since displayed increased resistance to common antifungal medications at an alarming rate.

Detection Limitations

• Many traditional phenotypic methods for yeast identification misidentify *C. auris* as another yeast species.

Identification Method	Potential Misidentification
Vitek 2 YST	Candida haemulonii Candida duobushaemulonii
API 20C	Candida sake Rhodotorula glutinis
API ID 32C	Candida intermedia Candida sake Saccharomyces kluyveri
BD Phoenix Yeast ID System	Candida catenulata Candida haemulonii
MicroScan	Candida famata Candida guilliermondii Candida lusitaniae Candida parapsilosis
RapID Yeast Plus	Candida parapsilosis

Table 1. Common yeast identification methods that may misidentify C. auris.¹

- MALDI-TOF can accurately detect *C. auris*, but this
 method requires subculturing an original sample before
 MALDI-TOF use, which increases labor, turn-around time,
 and is prohibitive for high-volume testing.
- There is a need for an automated, high-throughput, and accurate CLIA validated PCR test for epidemiological outbreak investigation and colonization screening.

Our Process

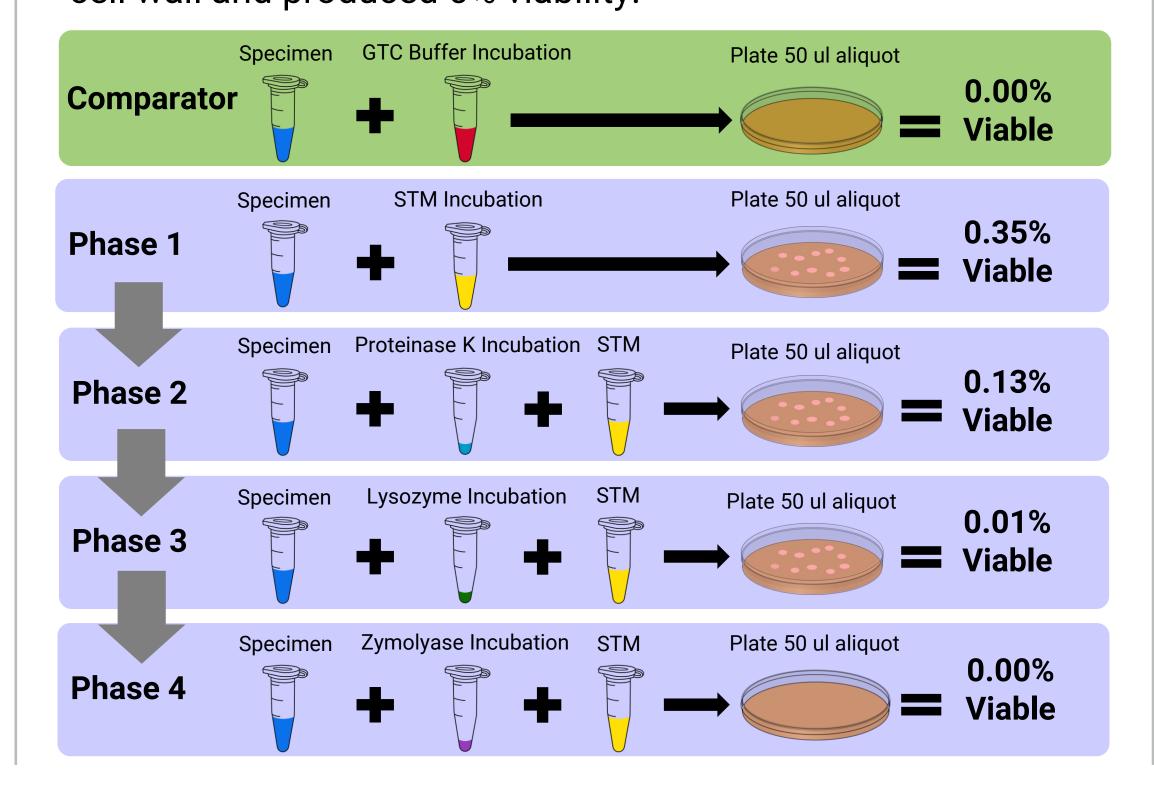
Here, we describe the process for developing and optimizing a laboratory-developed assay (LDA) for *C. auris* detection in axilla/groin ESwabs by PCR on the fully automated Hologic Panther Fusion® Open Access™ system.

- A risk assessment and viability study were conducted to ensure laboratory safety during protocol development.
- Various concentrations of select reagents in a primer probe mix (PPM) were evaluated and optimized following Hologic's Open Access™ training recommendations.
- Validation was accomplished using C. auris culture previously characterized by MALDI-TOF from the CDC & FDA AR Isolate Bank to assess accuracy, precision, sensitivity, and specificity.

Risk Assessment

Given that *C. auris* can survive for weeks on surfaces, has reduced susceptibility to common disinfectants, and can colonize individuals, a risk assessment was warranted. Table 2 exemplifies the matrix used to assess the likelihood and consequence of a potential risk within our assay protocol. Table 3 displays one of the risks identified within our assay protocol as well controls implemented to mitigate the risk.

Risk As	ssessment	Consequence			
M	latrix	Insignificant Minor Moderate Ma		Major	
po	Highly likely	Medium	Medium	High	High
þó	Likely	Low	Medium	High	High
-ikelihood	Possible	Low	Medium	Medium	High
T:I	Unlikely	Low	Low	Medium	Medium


Table 2. Risk assessment matrix utilized at the State Hygienic Laboratory.

TASK	HAZARD	INITIAL RISK LEVEL WITHOUT CONTROLS	CONTROL MEASURES TO BE IMPLEMENTED	RESIDUAL RISK LEVEL WITH CONTROLS
			Engineering controls: Process specimens in	
			a BSC.	
	<u>Biological</u>		Administrative Controls: Ensure the BSC is	
	<u>Hazard:</u>		functioning properly, visually inspect	<u>Likelihood:</u>
	Potential	Likelihood: Likely	specimens for leakage, dispose pipette tips	Unlikely
Transferring	pathogen	Consequence:	and other materials appropriately, complete	Consequence:
Specimen in	exposure	Moderate/Major	lysis protocol before removing specimens	Moderate/Minor
BSC.	through	Initial Risk Level:	from the BSC, decontaminate the BSC with	Risk Residual
	splash	High	10% bleach solution followed by 70%	<u>Level:</u>
	splatter or		ethanol solution, change gloves and gown	Medium/Low
	leakage/drips.		when leaving the BSC.	
			PPE: Face shield, double gloves, disposable	
			back closing gown.	

Table 3. Example of a risk identified within our protocol and how controls were implemented.

Viability Study

Due to a lack of *C. auris* viability studies and to ensure staff safety and prevent contamination outside of the BSC, we conducted a viability study comparing several different enzymes. Zymolyase[®] at 37°C for 10 minutes followed by inactivation at 95°C for 10 min effectively lysed the *C. auris* cell wall and produced 0% viability.

Optimization

The sequences and target used for *C. auris* detection as well as the final optimized PPM concentrations are shown in Table 4 and 5, respectively.

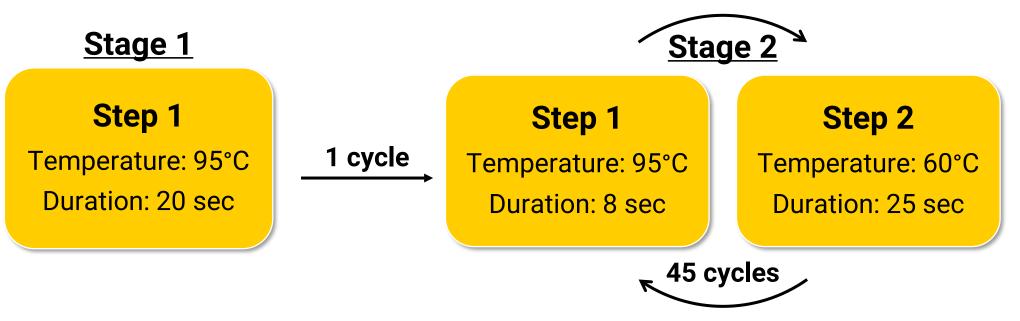

Analyte Name	Sequence	Gene Target	
C. auris F Primer	CAG ACG TGA ATC ATC GAA TCT		
C. auris R Primer	TTT CGT GCA AGC TGT AAT TT	ITS2	
C. auris Probe	/56-FAM/AA TCT TCG C/ZEN/G GTG GCG TTG CAT TCA /3IABkFQ/		
	GCG TTG CAT TCA / STADKFQ/		
Panther® Fusion IC-X Primers	N/A	N1 / A	
Panther® Fusion IC-X Probe(s)	N/A	N/A	

Table 4. Primer and probe sequences for C. auris target and internal control. ^{2,3}

Component	Stock Concentration	Units	Final Concentration	Concentration for 1.25X PPM	Volume (ul) for PPM
Water					903
KCI	1000	mM	0	0	0
MgCl2	1000	mM	5	6.25	6.25
Tris Buffer	1000	mM	12.5	15.5	15.5
C. auris FWD Primer	100	uM	0.75	0.95	9.5
C. auris REV Primer	100	uM	0.75	0.95	9.5
C. auris Probe	100	uM	0.5	0.65	6.25
IC-X Primers	37.5	uM	0.75	0.94	25
IC-X Probe	25	uM	0.5	0.63	25
-					1000

Table 5. Final optimized PPM for 30 C. auris PCR tests on the Panther Fusion.^{3,4}

PCR Cycling Parameters - Projected runtime: 49 min 13 sec

Validation

Limit of Detection & Sensitivity

- Plan: Accept LOD if 19/20 (95%) of dilution replicates are positive.
- Result: LOD = 93 CFU/mL
- PCR Efficiency: 98.78% (R²: 0.9761)

Accuracy

- Plan: ≥90% specimens must agree with AR Isolate Bank.
- Result: 100% accuracy between instruments and days.

Precision

- Plan: Positive specimens must be within +/- 3 CTs.
- Result: 100% precision between instruments and days.
 Specificity
- Plan: Specificity specimens must be negative for C. auris.
- Result: 100% specificity between instrument and days.

Interfering Substances

- Plan: To see if deodorant causes inhibition, lab staff selfcollected axilla ESwabs that were then spiked with positive control. Spiked ESwabs must be within +/- 3 CTs of positive control.
- Result: No significant inhibition from axilla ESwabs.

Conclusion

- The LDA was successfully optimized and CLIA validated as a diagnostic test for epidemiological outbreak investigation and colonization screening.
- Our lysis protocol using Zymolyase ® performed in the BSC prior to running on the Panther Fusion ensures lab staff safety and prevents contamination.
- The Panther Fusion's® automated extraction reduces labor and turn-around time and increases reproducibility of results, and specimens do not require additional diagnostic confirmation due to the LDA's high specificity for *C. auris*, enhancing convenience of results.
- All methods outlined in this poster for developing an LDA using the Hologic Panther Fusion [®] Open Access™ system are great resources to help prepare public health laboratories for increased testing volume and to improve current workflows.
- Furthermore, these methods can be easily applied to the rapid development and optimization of LDAs for other pathogens of public health significance.

Limitations

 Plating and counting CFUs to determine CFU/mL is not as precise as using DNA copies/mL to assess the LOD.

Next Steps

 Develop a g-block control to obtain a LOD in copies/mL and to use as a positive control.

Acknowledgments

- The APHL Fellowship Program for providing the opportunity to complete this project, as Megan Ahmann is a current APHL Infectious Disease Fellow and Jeff Benfer is her mentor.
- Hologic[®] for providing Open Access[™] training as well as advice throughout this project.
- The University of Texas Medical Branch for sharing their experience with a similar project.
- The entire molecular team at SHL, especially Kris Eveland, for providing training and advice through this project.

References

- 1. Centers for Disease Control and Prevention. (2022). Algorithm to Identify *Candida auris* Based on Phenotypic Laboratory Method and Initial Species Identification. Retrieved from https://www.cdc.gov/fungal/candida-auris/identification.html#:~:text=%2AThere%20have%20been%20reports%20of%20C.%20auris%20being,C.%20auris%2
- Odoes%20not%20make%20hyphae%20or%20pseudohyphae Leach, L., Zhu, Y., & Chaturvedi, S. (2018). Development and Validation of a Real-Time PCR Assay for Rapid Detection of *Candida auris* from Surveillance Samples. Journal of clinical microbiology, 56(2), e01223-17.
- https://doi.org/10.1128/JCM.01223-17
 . Centers for Disease Control and Prevention. (2019). Real-Time PCR Based Identification of *Candida auris* Using Applied Biosystems 7500 Fast Real-Time PCR Platform. Retrieved from https://www.cdc.gov/fungal/lab-professionals/real-time-
- 4. University of Texas Medical Branch. (2022). Real-Time PCR Based Identification of *Candida auris* Using Panther Fusion. Retrieved from Filipe Cerqueira, PhD (CPEP Fellow at UTMB)

